THE PROGRAM

The Wiess School of Natural Sciences offers professional master’s degrees in the following five areas: Subsurface Geoscience, Environmental Analysis and Decision Making, Nanoscale Science, Bioscience and Health Policy and Space Studies. These degrees equip students with the skills needed to bridge the gaps between science, business and government. Students are educated in the scientific approach to problems and are simultaneously trained in vital business concepts, policy issues and communication skills.

Each degree track is composed of science courses, a set of cohort courses and an internship. The cohort courses, required for students enrolled in all five tracks, focus on business and communication skills and prepare students for work in a nonacademic environment. The required internship allows students to apply the knowledge and skills acquired at Rice while gaining valuable work experience in an industrial setting. This combination of an interdisciplinary curriculum and hands-on experience enables graduates to hit the ground running in a business environment.

Students in the Professional Science Master’s program will benefit from Rice’s low student–faculty ratio and its collaborative culture that crosses disciplines and integrates teaching and research. Within the Wiess School of Natural Sciences are six departments, all with strong national reputations and excellent faculty. Wiess School faculty and staff members are active in their fields and professional societies and contribute significantly at national and international levels. Numbered among the faculty is a Nobel laureate, two members of the National Academy of Sciences and numerous fellows of the American Association for the Advancement of Science and the American Academy of Arts and Sciences. In addition to studying under Wiess School professors, students will be exposed to management issues, policy, ethics and communication curricula developed and taught by Rice professors in the George R. Brown School of Engineering, the Jesse H. Jones Graduate School of Business and the James A. Baker III Institute for Public Policy.

PROFESSIONAL SCIENCE MASTER’S FIFTH-YEAR DEGREE OPTION FOR RICE UNDERGRADUATES

Rice students have an option to achieve a Professional Master’s Degree by adding a fifth year to the four undergraduate years of science studies. Advanced Rice students in good standing apply during their junior year, then start taking required core courses of the program during their senior year. A plan of study based on their particular focus area will need to be approved by the faculty advisor.

PSM/MBA COORDINATED DEGREE PROGRAM

In order to offer a deeper immersion into management and business acumen, the Professional Science Master’s is collaborating with Rice’s Jesse H. Jones Graduate School of Business to offer a double degree PSM/MBA program. According to the Professional Science Master’s track chosen, graduates are qualified for leadership roles in industries related to the environment, nanotechnology, energy and government.

SCIENCE COURSES

Each degree track includes a set of core science courses that provide students with the technical knowledge needed by industrial and governmental organizations. Students supplement these foundation courses by choosing electives in line with their areas of interest.

COHORT COURSES

Management for Science and Engineering
This course is designed to give students insights into how technology-oriented firms manage intellectual property, marketing, organizational behavior, strategy, accounting and finance.
Science Policy and Ethics

This course provides students with a broader understanding of the ways that politics, policies and ethics interact with the world of business, science and technology. Topics include business ethics, ethics application, policy and politics, policy analysis and public policies.

Professional Master's Seminar

This weekly seminar serves to provide exposure to local industry leaders from all program tracks and to generate a forum for students to present internship project results and receive communication training.

INTERNSHIPS

The required internship is a unique feature of the degrees from the Professional Science Master’s Program. Students are required to complete a three- to six-month internship with a company, government agency or national laboratory. Students may choose any internship in line with their interests and area of study, provided it is approved by the track director. Assistance in identifying potential internships will be provided. Students also will benefit from Rice’s close ties with local and national industry and from personal contact with business executives speaking at the Professional Master’s Seminar.

At the conclusion of this internship, students must present a summary of their internship project(s) in both oral and written form as part of the Professional Master’s Seminar. This serves as the culmination of each student’s academic program in science and industry.

Rice recognizes that many students may have previous industrial experience in their area of study. In lieu of an internship, these students may choose an appropriate project for their final report. Part-time students who already work in their area of study may fulfill the internship requirement by working on a special project with their current employer. All projects require approval from the appropriate track director.

BOARD OF AFFILIATES

Industry has played an important role in all stages of the development of the Professional Science Master’s (PSM) Program at Rice. The PSM Board of Affiliates consists of managers and/or entrepreneurs relevant to each of the industrial focus areas of the five program tracks advising and guiding program faculty on industry workforce needs, and providing feedback on curriculum development. The members of the Board of Affiliates have national and international recognition in their fields and assist in identifying future directions and needs within each of the focus areas to keep the program updated and relevant.

M.S. IN SUBSURFACE GEOSCIENCE

<table>
<thead>
<tr>
<th>Required professional courses (9 credits):</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSCI 501 Professional Master’s Seminar (F/S) [required for two semesters]</td>
</tr>
<tr>
<td>NSCI 511 Science Policy and Ethics (S)</td>
</tr>
<tr>
<td>NSCI 512 Professional Master’s Project (F/S)</td>
</tr>
<tr>
<td>NSCI 610 Management in Science and Engineering (F/S)</td>
</tr>
</tbody>
</table>

There are two focus areas in the Subsurface Geoscience Track: Geology and Geophysics

GEOLOGY FOCUS AREA

<table>
<thead>
<tr>
<th>Required Courses (22 credits):</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 521 3D Seismic Reflection Data Interpretation</td>
</tr>
<tr>
<td>ESCI 515 Petroleum Geology (S)</td>
</tr>
<tr>
<td>ESCI 517 Petroleum Industry Economics and Management (S)</td>
</tr>
<tr>
<td>ESCI 626 Interpretation of Regional 2D Seismic Data</td>
</tr>
<tr>
<td>ESCI 627 Sequence Stratigraphy (S)</td>
</tr>
<tr>
<td>ESCI 636 Well Logging and Petrophysics (S)</td>
</tr>
<tr>
<td>ESCI 640 Exploration Geophysics I (F)</td>
</tr>
</tbody>
</table>

Students will choose three electives (9 credits)

<table>
<thead>
<tr>
<th>Suggested Electives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 564 Siliciclastic Depositional Systems (F)</td>
</tr>
<tr>
<td>ESCI 566 Carbonate Depositional Systems (S)</td>
</tr>
<tr>
<td>ESCI 544 Hydrocarbon Exploration (AAPG Imperial Barrel co petition) (S)</td>
</tr>
<tr>
<td>ESCI 550 Modern Exploration Technology (S)</td>
</tr>
<tr>
<td>ESCI 558 3D Seismic Reflection Data Interpretation</td>
</tr>
<tr>
<td>ESCI 663 Advanced Structural Geology I (S)</td>
</tr>
<tr>
<td>ESCI 564 Seismic Data Processing (S)</td>
</tr>
<tr>
<td>ESCI 567 Unconventional Energy Exploration</td>
</tr>
</tbody>
</table>

Substitutions for required or elective courses may be approved by the Track Advisors.

GEOPHYSICS FOCUS AREA

<table>
<thead>
<tr>
<th>Required Courses (22 credits):</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 521 3D Seismic Reflection Data Interpretation (F)</td>
</tr>
<tr>
<td>ESCI 515 Petroleum Geology (S)</td>
</tr>
<tr>
<td>ESCI 517 Petroleum Industry Economics and Management (S)</td>
</tr>
<tr>
<td>ESCI 626 Interpretation of 2-D Seismic Data (F)</td>
</tr>
<tr>
<td>ESCI 640 3D Geophysical Data Analysis: Digital Signal Processing (F), or,</td>
</tr>
<tr>
<td>ESCI 641 Geophysical Data Analysis: Inverse Methods (F)</td>
</tr>
<tr>
<td>ESCI 642 Exploration Geophysics (F)</td>
</tr>
</tbody>
</table>

Students will choose three electives (9 credits)

<table>
<thead>
<tr>
<th>Suggested Electives:</th>
</tr>
</thead>
<tbody>
<tr>
<td>ESCI 534 Geological Field Methods (S)</td>
</tr>
<tr>
<td>ESCI 536 Siliciclastic Depositional Systems</td>
</tr>
<tr>
<td>ESCI 556 Carbonate Depositional Systems</td>
</tr>
<tr>
<td>ESCI 544 Hydrocarbon Exploration (AAPG Imperial Barrel co petition) (S)</td>
</tr>
<tr>
<td>ESCI 567 Unconventional Energy Exploration</td>
</tr>
<tr>
<td>MGMT 610 Fundamentals of the Energy Industry</td>
</tr>
<tr>
<td>ESCI 627 Interpretation of Regional 2D Seismic Data</td>
</tr>
<tr>
<td>ESCI 636 Tectonic Systems (F)</td>
</tr>
<tr>
<td>ESCI 663 Structure and Evolution of Tectonic Systems</td>
</tr>
</tbody>
</table>

... and others
Students will enroll in two courses team-taught by industry leaders. Petroleum Industry Economics and Management introduces students to essential components of financial decision making in the energy business, emphasizing risk analysis, and Modern Industrial Exploration Techniques exposes students to advanced techniques currently used in the exploration industry.

THE FACULTY AND THEIR RESEARCH

Vitor Abreu. Adjunct Professor. Ph.D., Rice University, Senior Exploration Geologist, ExxonMobil Exploration Company. Sequence stratigraphy, evolution of passive margins and deep-water reservoirs.

Andrew R. Barron. Professor. Ph.D., Imperial College of Science and Technology, University of London, 1986. Applications of inorganic chemistry to the materials science of aluminum, gallium and indium.

Peter Rossky. Dean of Wiess School of Natural Sciences. Ph.D., Harvard University. Theoretical chemistry, computer simulation, solvent effects on chemical reactions, condensed phase quantum dynamics, photochemistry.

M.S. IN ENVIRONMENTAL ANALYSIS AND DECISION MAKING

The Environmental Analysis and Decision Making track will teach students rigorous methods that are needed by industrial and governmental organizations to deal with environmental issues. In addition to track courses, students will take a management course, a policy and ethics course and a seminar jointly with the students involved in the other tracks.

To ensure that all students obtain an excellent quantitative background, each student will be required to take a set of core courses. If a student can demonstrate that he or she has learned the material elsewhere, he or she may be exempted. In addition to completing the core courses, the student will choose electives.

Elective Courses

Students will choose 21 credit hours elective courses from the following three focus areas and satisfying the following requirements:

one course (3 credits) from each of EBIO, CEVE and STAT,

one course (3 credits) from the Management and Policy focus area,

three courses (9 credits) from one focus area.

Recommended courses include, but are not limited to, the following:

Environmental Sustainability

CEVE 501 Chemistry for Environmental Engineering and Science (F)
CEVE 502 Sustainable Design (F)
CEVE 507 Energy and the Environment (S)
CEVE 508 Introduction to Air Pollution Control
CEVE 509 Hydrology and Water Resources (S)
CEVE 511 Atmospheric Processes (F)
CEVE 512 Advanced Hydrology and Hydraulics (S)
CEVE 518 Ground Water Contamination and Modeling (S)
CEVE 520 Environmental Remediation and Restoration (F)
CEVE 534 Fate and Transport of Contaminants in the Environment (F)
CEVE 536 Environmental Biotechnology and Bioremediation (S)
CEVE 550 Environmental Organic Chemistry (S)
EBIO 523 Conservation Biology (F) + EBIO 524 Lab
EBIO 525 Ecology (F)
EBIO 540 Global Biochemical Cycles
EBIO 563 Topics in Biological Diversity (F)
EBIO 566 Applied Phycology
EBIO 568 Current topics in Conservation Biology (S)
EBIO 569 Core course in Ecology and Evolutionary Biology (F)
EBIO 579 Aquatic Ecology with Scuba
EBIO 580 Sustainability Developments and Reporting (F)
THE FACULTY AND THEIR RESEARCH

Pedro Alvarez. Professor, Chair of the Department of Civil and Environmental Engineering. Ph.D., University of Michigan. Biological processes in natural and engineered systems.

Andrew R. Barron. Professor. Ph.D., Imperial College of Science and Technology, University of London, 1986. Applications of inorganic chemistry to the materials science of aluminum, gallium and indium.

Jim Blackburn. Professor. Practice in Environmental Law. Sustainable development, air pollution control strategy, and nonstructured flood control.

Qilin Li. Associate Professor. Ph.D., University of Illinois at Urbana-Champaign, 2002. Advanced treatment technologies for water quality control, membrane processes, colloids and interface science, and environmental impact of nanomaterials.

Peter Rossky. Dean of Wiess School of Natural Sciences. Ph.D., Harvard University. Theoretical chemistry, computer simulation, solvent effects on chemical reactions, condensed phase quantum dynamics, photochemistry.

THE FACULTY AND THEIR RESEARCH

M.S. IN NANOSCALE SCIENCE

Required courses:
- PHYS 533: Nanostructures and Nanotechnology I (F)
- PHYS 534: Nanostructures and Nanotechnology II (S)
- PHYS 537: Methods of Experimental Physics I (F)

PLUS one course from the choices below:
- PHYS 538: Methods of Experimental Physics II
- PHYS 539: Characterization and Fabrication at the Nanoscale (offered every other year)
- PHYS 416: Computational Physics
- PHYS 605: Computational Electrodynamics & Nano-Photonics
- ELEC 571: Imaging at the Nanoscale

Required Cohort Courses:
- NSCI 610: Management in Science and Engineering (F)
- NSCI 501: Professional Master’s Seminar (F/S) (required for two semesters)
- NSCI 511: Science Policy and Ethics (S)
- NSCI 512: Professional Master’s Project (F/S)

Elective Courses

Students will choose another six courses from electives as grouped below, at least two courses should be from a technical focus area.

FOCUS Electives:

Nano-Materials
- PHYS 547: Computational Physics (S)
- PHYS 538: Methods of Experimental Physics II (S)
- PHYS 539: Characterization and Fabrication at the Nanoscale (F)
- MSNE 535: Crystallography and Diffraction (S)
- MSNE 580: Microscopy Methods in Material Science (S)
- MSNE 614: Special Topics II (F)
- MSNE 650: Nanomaterials and Nanomechanics (S)

Nano-Optics and Nano-Photonics
- ELEC 568: Laser Spectroscopy (F)
- ELEC 521: High Performance Nanoscale Systems
- ELEC 571: Imaging at the Nanoscale (S)
- ELEC 575: Optical Spectroscopy of Nanomaterials (S)
- ELEC 605: Nano-optics and Nano-photonics (F)
- ELEC 685: Fundamentals of Medical Imaging (F)
- PHYS 560: Ultrafast Optical Phenomena (S)
- ELEC 585: Fundamentals of Medical Imaging

Nano-Bio
- BIOE 442: Tissue Engineering (F)
- CHEM 547: Supramolecular Chemistry (F)
- ELEC 571: Imaging at the Nanoscale (S)
- ELEC 568: Laser Spectroscopy (F)
- PHYS 539: Characterization and Fabrication at the Nanoscale (F)

Management and Entrepreneurship:
- MGMT 629: Business Plan Development
- MGMT 625: Creative Entrepreneurship
- MGMT 676: Social Enterprise
- MGMT 734: Tech Entrepreneurship
- BUSI 463: Entrepreneurship: Strategy and Funding
- MGMT 72: Social Entrepreneurship

Other Electives
- MGMT 699: Managing Energy Transitions (S)
- MGMT 661: International Business Law (F)
- MGMT 669: Business Strategy in Energy Industry (S)
- MGMT 670: Operations Strategy (F)
- MGMT 721: General Business Law (S)
- CEVE 505: Engineering Project Management

TOTAL REQUIRED CREDIT HOURS: 39 hours

Douglas Natelson. Professor. Ph.D., Stanford University, 1998. Nanoscale physics, in particular the electrical and magnetic properties of systems with characteristic dimensions approaching the single-nm scale.

Andrew R. Barron. Professor. Ph.D., Imperial College of Science and Technology, University of London, 1986. Applications of inorganic chemistry to the materials science of aluminum, gallium and indium.

Peter Rossky. Dean of Weiss School of Natural Sciences. Ph.D., Harvard University. Theoretical chemistry, computer simulation, solvent effects on chemical reactions, condensed phase quantum dynamics, photochemistry.

Isabell Thomann. Assistant Professor. Electrical and Computer Engineering, PhD Physics, University of Colorado at Boulder. Photonics, Electronics and Nano-devices.

MASTER'S DEGREE IN BIOSCIENCE AND HEALTH POLICY

The Bioscience and Health Policy track will give students a deep background in science complemented by courses in business, economics, humanities and policy studies to foster their understanding of the role of science in policy making and the role of public policy in science. Their coursework will provide research and study skills enabling students to develop specific policy recommendations. Students will also receive the tool-set to become knowledgeable in the formulation and execution of public policy. In addition to track courses, students will take an overview course in Science and Technology Policy, a management course and a seminar jointly with the students involved in the other tracks.

Direct access with the Baker Institute for Public Policy will allow students to work closely with policy scholars as well as meet with many of the leaders in science and technology policy, healthcare management and business.

This program focuses on training health policy analysts providing them with the tools to face the complex challenges inherent in the US bioscience research, public health, healthcare systems and health-related industry.

THE FACULTY AND THEIR RESEARCH

Janet Braam. Professor, Chair of the Department of Biosciences. Ph.D., Cornell Graduate School of Medical Sciences, 1985. Regulation and functions of genes encoding calmodulin-related proteins and cell wall modifying enzymes of plants. Control of gene expression in response to environmental stimuli. Calcium and nitric oxide signaling. Autophagy regulation.

Andrew R. Barron. Professor. Ph.D., Imperial College of Science and Technology, University of London, 1986. Applications of inorganic chemistry to materials science of aluminum, gallium and indium.
M.S. IN BIOSCIENCE AND HEALTH POLICY

Four Required Bioscience Classes:
The bioscience courses give in-depth instruction in specialized areas of Bioscience. Four courses are required to obtain a broad understanding of diverse areas of cutting edge bioscience research.

- BIOC 524 Microbiology and Biotechnology (S)
- BIOC 540 Metabolic Engineering
- BIOC 563 Endocrinology (S)
- BIOC 573 Immunology (S/F)
- BIOC 585 Fundamentals of Cellular, Molecular, and Integrative Neuroscience (F)
- BIOC 525 Plant Molecular Genetics and Development (F)
- BIOC 544 Developmental Biology (S)
- BIOC 545 Advanced Molecular Biology and Genetics (F)
- BIOC 547 Biology and Medicine (S)
- BIOC 550 Viruses and Infectious Diseases
- BIOC 560 Cancer Biology (S)
- BIOC 580 Protein Engineering
- BIOC 570 Computation with Biological Data

Required Cohort Courses:
- NSCI 501 Master’s Seminar (two semesters required) (S/F)
- NSCI 511 Science and Technology Policy (S)
- NSCI 512 Professional Master’s Project (S)
- NSCI 610 Management in Science and Engineering (S/F)

Four Statistics, Economics, and Policy Courses:
The analytical competency requirement provides career-enhancing, marketable skills in policy analysis, economics and statistics. Students will take courses from groups A, B and C as indicated below:

A – One Statistics/Data Analytics Course:
- STAT 305 Introduction to Statistics in Biosciences
- STAT 385 Methods of Data Analysis
- STAT 553 Biostatistics
- STAT 684 Environmental Risk Assessment and Human Health
- MGMT 750 Strategic Considerations in Health Informatics

B – One Economics Course:
- ECON 450 Economic Development
- ECON 481 Health Economics (requires pre-requisites)
- MGMT 679 Cost and Quality in Health Care
- MGMT 673 Cost Analysis in Health Care
- PH 3910* Introduction to Health Economics

C – Two Policy Courses
- ANTH 581 Medical Anthropology
- ANTH 643 Anthropology of Race, Ethnicity and Health
- ECON 450 World Economy and Social Development
- HEAL 507 Epidemiology
- HEAL 560 Planning and Evaluation of Health Promotion and Education
- MGMT 633 Life Science Entrepreneurship
- MGMT 678 U.S. Healthcare Management
- MGMT 961 Business Law
- PHIL 336 Topics in Medical Ethics
- STAT 684 Environmental Risk Assessment and Human Health
- GS 129254 Cell and Systems Physiology
- GS 129043 Principles of Pathology
- MGMT 623 Commercialization in Pharma/Biotech
- MGMT 712 Process Management and Quality Improvement
- MGMT 738 Customer Focus in Healthcare and Service Industries: A Strategic Approach
- MGMT 750 Strategic Considerations in Health Informatics
- MGMT 751 Economics of Healthcare Sectors

Required Internship:
A three- to six-month internship with a company, government agency or national laboratory. At the conclusion of this internship, students must present their internship project in both oral and written form as part of the Professional Master’s Project.

TOTAL REQUIRED CREDIT HOURS: 39 hours
M.S. IN SPACE STUDIES

Cohort Courses:

- NSCI 511 Science Policy and Ethics (S)
- NSCI 610 Management for Science and Engineering (F/S)
- NSCI 501 Professional Master’s Seminar (F/S)
- NSCI 502 Space Studies Seminar (S)
- NSCI 512 Internship Project Report/Presentation

Five Science Courses:

- ASTR 570 Solar System Physics (F)
- STAT 615 Regression and Linear Models (F)
- MECH 572 Aerospace Systems Engineering (S)

With two courses to be chosen from the list below:

- ASTR 554 Astrophysics of the Sun (S)
- BIOC 415 Experimental Physiology (S)
- BIOC 540 Metabolic Engineering (F)
- ESCI 450 Earth’s Atmosphere (F)
- ESCI 660 Geophysical and Geothermal Fluid Dynamics (F)
- MECH 554 Computational Fluid Mechanics (F)

Two Statistics/Computation Courses:

- STAT 310 R for Data Science
- STAT 640 Data Mining and Statistical Learning

Depending on background, other courses can be chosen.

3 Electives according to student’s interest:

Focus: Engineering

- CEVE 504 Atmospheric Particular Matter (S)
- CEVE 505 Eng. Project Development & Management (F)
- CEVE 511 Structural Dynamics and Control (S)
- COMP/ELEC/MECH 498 Intro to Robotics (S)
- MECH 454 Computational Fluid Mechanics (F)
- MECH 572 Aerospace Systems Engineering
- MECH 591 Gas Dynamics (S)
- MECH 599 Human Factors in Space (S)
- MECH 599/Sec 2 Spacecraft Navigation (S)
- MECH 599/Sec 3 Design for Aerospace Environments
- MECH 691 Hypersonic Aerodynamics (F)

Focus: Sciences (Astro Science/Earth Science/Life Sciences)

- ASTR 542 Nebular Astrophysics
- ASTR 554 Astrophysics of the Sun (S)
- ASTR 555 Protostars and Planets (S)
- ASTR 565 Compact Objects (S)
- BIOC 524 Microbiology and Biotechnology
- BIOC 540 Metabolic Engineering
- BIOC 544 Developmental Biology
- BIOC 545 Advanced Molecular Biology and Genetics
- BIOC 570 Computational with Biological Data
- BIOC 580 Protein Engineering
- ESCI 667 Geomechanics
- ESCI 672 Numerical Methods Earth Systems
- ESCI 540 Earth’s Atmosphere
- ESCI 581 Topics in Planetary Dynamics

NOTE: FOCUS AREAS IN EARTH SCIENCE, PHYSICS AND LIFE SCIENCES can be chosen depending on student’s background. Students will consult with academic advisor about appropriate selection of elective science courses.

Focus: Management

- MGMT 734 Technology Entrepreneurship
- MGMT 629 Business Plan Development (F)
- MGMT 691 Financial Statement Analysis (F)
- MGMT 618 Complexities of People and Organizations (F)
- MGMT 658 Applied Risk Management (S)
- MGMT 619 Corporate Governance (S)

and others ...

A 3 – 6 months internship: Practical experience is offered via a 3 – 6 month work immersion. The internship will be under the guidance of a host company, government agency, or non-profit organization. A summary of the internship project is required in both oral and written form as part of the Professional Master’s Seminar.

TOTAL REQUIRED CREDIT HOURS: 39 hours
ADMISSION
Admission requirements for the Professional Master’s Program degrees will vary with each track. All students must have a science bachelor’s degree and submit general GRE scores, official transcripts, letters of recommendation and a completed application. Contact the program director or visit the program Web site at www.profms.rice.edu for specific admission information.

TUITION
Most students require three full semesters of courses to complete the Professional Master’s Program. Graduate tuition for academic year 2016–17 is $18,000 per semester. The student does not pay tuition during the internship period, but may need to pay a small fee to continue full-time student status. Although Rice does not offer financial assistance for these degrees, most U.S. citizens and permanent residents are eligible for federal student loans and work-study programs. Sources of additional financial assistance can be found at www.profms.rice.edu.

ABOUT RICE AND HOUSTON
Rice is a leading American research university — small, private and highly selective — distinguished by a collaborative, interdisciplinary culture and a global perspective. Only a few miles from downtown Houston, it occupies an architecturally distinctive, 285-acre campus shaded by nearly 4,000 trees. State-of-the-art facilities and laboratories, internationally renowned centers and institutes and one of the country’s largest endowments support an ideal learning and living environment.

The university attracts a diverse group of highly talented students and faculty with outstanding graduate and professional programs in the humanities, social sciences, natural sciences, engineering, architecture, music and business. With just 2,744 graduate students and 3,965 undergraduates, it offers an unusual opportunity to forge close relationships with eminent faculty scholars and researchers and the option to tailor graduate programs to specific interests.

Houston offers all the expected educational, cultural and commercial advantages of a large urban center, and more. It’s home of the Texas Medical Center, the largest concentration of medical schools, hospitals and research facilities in the world, as well as several other universities. Rice has cooperative programs with the University of Houston, Baylor College of Medicine, the University of Texas Health Science Center and Texas Southern University. Houston is one of the few U.S. cities with resident companies in all four major performing arts: drama, ballet, opera and symphony. It also boasts a museum district featuring exhibits of national and international prominence.

As urban as it is, Houston also is a surprisingly green city. Houstonians enjoy the outdoors in more than 300 municipal parks and 120 open spaces, and many frequent the beach at Galveston Island, only a 45-minute drive away. Other short trips include Austin, the state’s capital, and historic San Antonio, less than three hours away.

FOR MORE INFORMATION
To receive more information about the Professional Master’s Program:

Contact:
Dagmar K. Beck
Director, Professional Master’s in Science and Engineering
713-348-3188
profms@rice.edu

or

Lindsey Hodge
Program Administrator
713-348-2372

Dean of the Wiess School of Natural Sciences
Peter Rossky: 713-348-3350

Or fax: 713-348-3121

Or write to:
Rice University
Professional Science Master’s Program
Wiess School of Natural Sciences–MS 103
P.O. Box 1892
Houston, Texas 77251-1892

Or visit the program Web site: www.profms.rice.edu

FOR ADDITIONAL INFORMATION:
Rice University homepage:
www.rice.edu
Rice University Office of Graduate and Postdoctoral Studies homepage:
graduate.rice.edu
Graduate Student Association homepage:
gsa.rice.edu
City of Houston homepage:
www.houstontx.gov
Houston information from the Houston Chronicle:
www.chron.com
Houston information from the Greater Houston Partnership:
www.houston.org
Houston information from Citysearch:
houston.citysearch.com